
Genome Biology 2003, 4:R28

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

Software
GoMiner: a resource for biological interpretation of genomic and
proteomic data
Barry R Zeeberg*, Weimin Feng†, Geoffrey Wang‡, May D Wang†, Anthony
T Fojo*, Margot Sunshine§, Sudarshan Narasimhan§, David W Kane§,
William C Reinhold*, Samir Lababidi*, Kimberly J Bussey*, Joseph Riss¶,
J Carl Barrett¶ and John N Weinstein*

Addresses: *Genomics and Bioinformatics Group, Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of
Health, Bethesda, MD 20892, USA. †The Wallace H. Coulter Biomedical Engineering Department, Georgia Institute of Technology and
Emory University, Atlanta, GA 30332-0535, USA. ‡Computer Science and Chemistry Departments, Georgia Institute of Technology, Atlanta,
GA 30332, USA. §SRA International, 4300 Fair Lakes CT, Fairfax, VA 22033, USA. ¶Laboratory of Biosystems and Cancer, National Cancer
Institute, Bethesda, MD 20892, USA.

Correspondence: John N Weinstein. E-mail: weinstein@dtpax2.ncifcrf.nih.gov

Abstract

We have developed GoMiner, a program package that organizes lists of ‘interesting’ genes (for
example, under- and overexpressed genes from a microarray experiment) for biological
interpretation in the context of the Gene Ontology. GoMiner provides quantitative and statistical
output files and two useful visualizations. The first is a tree-like structure analogous to that in the
AmiGO browser and the second is a compact, dynamically interactive ‘directed acyclic graph’.
Genes displayed in GoMiner are linked to major public bioinformatics resources.

Published: 25 March 2003

Genome Biology 2003, 4:R28

The electronic version of this article is the complete one and can be
found online at http://genomebiology.com/2003/4/4/R28

Received: 1 November 2002
Revised: 29 January 2003
Accepted: 28 February 2003

Rationale
Gene-expression profiling and other forms of high-through-

put genomic and proteomic studies are revolutionizing

biology. That much is universally agreed. But the new tech-

nologies pose new challenges. The first is the experiment

itself, the second is statistical analysis of results, the third is

biological interpretation. That third challenge is often the

most vexing and time-consuming. In gene-expression

microarray studies, for example, one generally obtains a list

of dozens or hundreds of genes that differ in expression

between samples and then asks: ‘What does all of this mean

biologically?’ The work of the Gene Ontology (GO) Consor-

tium [1] provides a way to address that question. GO orga-

nizes genes into hierarchical categories based on biological

process, molecular function and subcellular localization. In

the past, this GO information was queried one gene at a

time. Recently, batch processing has been introduced [2],

but with a flat-format output that does not communicate the

richness of GO’s hierarchical structure.

We have developed, and present here, the program package

GoMiner as a freely available computer resource that fully

incorporates the hierarchical structure of the Gene Ontology

to automate the functional categorization of gene lists of any

length. GoMiner is downloadable free of charge from [3] or

[4]. GoMiner was developed particularly for biological inter-

pretation of microarray data; one can input a list of under-

and overexpressed genes and a list of all genes on the array,

and then calculate enrichment or depletion of categories with

genes that have changed expression. GoMiner thus facilitates

analysis and organization of the results for rapid interpreta-

tion of ‘omic’ [5,6] data. For concreteness, the descriptions in

Open Access

© 2003 Zeeberg et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.

http://www.biomedcentral.com/info/about/charter/

this article will focus on applications to microarray data, but

the range of uses is obviously much broader.

Overview of GoMiner
GoMiner takes as input two lists of genes: the total set on the

array and the subset that the user flags as interesting (for

example, altered in expression level). GoMiner displays the

genes within the framework of the Gene Ontology hierarchy,

both as a directed acyclic graph (DAG) and as the equivalent

tree structure. The latter is similar in format to the visualiza-

tion in the AmiGO browser display [1]. However, each cate-

gory is annotated to reflect the number of genes from the

user’s experiment assigned to that category plus the number

assigned to its progeny categories (Figure 1a). This computa-

tion does not double-count genes that appear more than

once along the traversal. The user has the option of designat-

ing each gene within the ‘interesting gene’ list as exhibiting

under- or overexpression. If that is done, genes displayed in

the tree-like view are tagged with green down-arrows or red

up-arrows, respectively.

The most important parameter for purposes of interpreta-

tion is the enrichment (or depletion) of a category with

respect to flagged genes (relative to what would have been

expected by chance alone). This parameter will be discussed

more extensively and more mathematically in the section on

‘Statistical considerations’. In Figure 1a, the relative enrich-

ment is indicated by blue numbers for total flagged genes

and by red and green numbers for over- and underexpressed

genes, respectively. The last number (blue) for each category

is a two-sided p-value from Fisher’s exact test.

In GoMiner, clicking on a gene of interest in the tree-struc-

ture opens a menu that can be used to submit that gene as a

query to an external data resource. The number of such

links is being expanded rapidly, but currently included are

LocusLink [7], PubMed [8], MedMiner [9,10], GeneCards

[11], the NCBI’s Structure Database [12], and BioCarta and

KEGG pathway maps as implemented by the NCI Cancer

Genome Anatomy Project (CGAP) [13]. These external data-

bases provide GoMiner with a rich set of resources for

bioinformatic integration. For example, the links with

CGAP and LocusLink provide interaction with pathway

maps, chromosome visualizations, a database of single

nucleotide polymorphism (SNP), and the Mammalian Gene

Collection (MGC).

In GoMiner, clicking on a category instead of a gene brings

up a second visualization (Figure 1b), a DAG programmed as

a scalable vector graphic (SVG) that can be navigated flu-

ently. Any of its nodes can be moused-over to list the flagged

genes or clicked to highlight multiple pathways connecting it

to the root. Detailed quantitative and statistical results are

downloadable in several tab-delimited formats that can be

read directly into a text file or a spreadsheet program for

further analysis. For example, the spreadsheet data can be

sorted by enrichment factor or p-value to focus attention on

potentially interesting categories.

Development of GoMiner
GoMiner is based on a variety of open-source Java classes and

developer tools, plus substantial in-house custom software

engineering (Figure 2). We chose Java to achieve indepen-

dence of operating system so that more researchers could use

the tool. A custom graphical user interface (GUI) provides the

user with flexibility and an intuitive view of biological relation-

ships (Figure 1a). A complementary command-line version of

GoMiner allows high-throughput applications and fluent

integration with other programs.

The heart of GoMiner is its processing engine (Figure 2),

which parses input gene lists and retrieves database entries

for association with GO categories (also called ‘terms’). The

GO categories and gene associations are stored in a rela-

tional database. To enhance the speed of data manipulation,

we model the information in memory using a DAG data

structure. The root is the topmost node: ‘Gene Ontology’.

The other nodes represent gene categories, and the connec-

tions represent relationships between categories. Each cate-

gory-node object contains its associated genes, functionality

for counting genes, a flag for dereplication during counting,

and results of statistical analyses. The gene-category associa-

tions are displayed in the form of a tree (Figure 1a) or, alter-

natively, in the form of a DAG (Figure 1b).

We have developed GoMiner as a client-server application.

The client, a Java application, communicates with a server-

side database through JDBC. The client can run on platforms

with Java run-time environment version 1.3 or higher. The

primary client-user GUI, written using the Java Swing API,

takes the form of a three-panel window in which the user can

inspect GO categories and genes. The left-hand panel lists the

genes, the databases from which their identities were derived,

and optional up- and down-arrows to indicate under- or over-

expression; the middle panel shows a tree visualization of cat-

egories in the style of the AmiGO browser [1] and, in addition,

provides a visualization of the flagged genes in the particular

microarray experiment. The right-hand panel shows all

appearances within the GO hierarchy of any gene selected

from the left or middle panel. The gene and category names

are implemented as links to facilitate navigation of the data

structures and access to public resources.

A second type of visualization, the DAG (programmed as an

SVG) shows in compact form the spanning hierarchy for all

flagged genes. Optionally, it can include only nodes below a

specified level if the entire DAG would be too large for

easy visualization. The client application uses several open

source components: the Berkeley Drosophila Genome

Project (BDGP) Java Toolkit [14] for utility classes; Browser

R28.2 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. http://genomebiology.com/2003/4/4/R28

Genome Biology 2003, 4:R28

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2003/4/4/R28 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. R28.3

Genome Biology 2003, 4:R28

Figure 1
GoMiner displays for microarray gene-expression data on prostate cancer cell line DU145 and a subline (RC0.1) selected for resistance to a
topoisomerase 1 inhibitor. (a) Tree-like display showing underexpressed genes (green down-arrows), overexpressed genes (red up-arrows), and
unchanged genes (gray circles) in the GO ‘Apoptosis Regulator’ category and its subcategories. The blue number indicates a 2.4-fold enrichment of
changed genes in this category. The p-value (Fisher’s exact) indicates that, despite this degree of enrichment, the small total number of genes (14) in this
category prevents statistical significance. (b) Dynamically generated SVG graphic of the ‘Biological Process’ DAG with genes in the GO ‘Apoptosis
Regulator’ category opened in a pull-down list by mousing-over. Categories enriched more than 1.5-fold with flagged genes are color-coded red; those
depleted more than 1.5-fold are blue. The rest of the categories are gray.

(a)

(b)

Launcher [15] for cross-platform web browser integration;

Jakarta-ORO [16] for text processing; the Jena Semantic Web

Toolkit [17] for manipulating RDF models; MySQL Connec-

tor/J [18] for database connectivity; and Xerces [19] for

parsing XML. The back-end is a relational database server,

which stores all gene ontology data. It includes an implemen-

tation in MySQL [20] of the GO Consortium database.

In addition to the deployed components, we have introduced a

number of open-source tools to enhance the development

environment. In particular, the Concurrent Versions System

(CVS) tool [21] coordinates program development at the

Georgia Institute of Technology with that at the NCI, and also

coordinates development within each of the groups. jUnit [22]

automates unit- and system-level testing of the application.

Statistical considerations
The two-sided Fisher’s exact test p-value for a category

reflects a test of the null hypothesis that the category is

neither enriched in, nor depleted of, flagged genes with

respect to what would have been expected by chance alone.

That is, it reflects the null hypothesis that, for each category,

there is no difference between the proportion of flagged genes

that fall into the category and the proportion of flagged genes

that do not fall into the category. The two groups of genes are

mutually exclusive, as required for Fisher’s exact test. Note

that the predicate of the null hypothesis does not include ‘the

flagged genes that fall into the union of the rest of the cate-

gories’. That predicate would not ensure mutual exclusivity.

The statistical question can be framed in terms of a classical

2 x 2 contingency table (Table 1).

The null hypothesis can be formulated as:

Ho: p1 - p2 = 0,

where p1 = nf /n and p2 = (Nf - nf)/(N – n). The two-sided p-

value for Fisher’s exact test is the sum of probabilities of

observing tables that give at least as many extreme values as

the one actually observed, given that the null hypothesis is

true [23-25]. The use of Fisher’s exact test implies that we

are conditioning on fixed marginal totals (n, N - n, Nf, N - Nf)

under the null hypothesis. For a discussion of the implica-

tions of fixed marginal values, see for example [23-25].

Note that the 2 x 2 table does not require any information

about the topology of the hierarchy or about how many genes

are included in any category other than the one to which the

test is being applied. We used the two-sided version of the

test, which detects a significant difference in the proportions

in either direction (that is, when the proportion of flagged

genes in the category is either higher or lower than would be

expected by random chance). Clearly, calculations analogous

R28.4 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. http://genomebiology.com/2003/4/4/R28

Genome Biology 2003, 4:R28

Figure 2
Schematic of GoMiner architecture and data flow.

Gene
database

Data sources
management

GO term
management

Gene data
management

GoMiner
engine

GO
database

GO
Terms

Gene
names

DAG

Tables

Experimental
data

Statistics

Query

Visualization

to the ones used here for all flagged genes can also be

applied to test separately the equivalent null hypotheses for

under- and overexpressed genes. Unlike the Z-statistic with

the hypergeometric distribution, and tests based on it, Fish-

er’s exact test is appropriate even for categories containing a

small number of genes. Our Java implementation of the

Fisher’s exact test is based on Javascript by Øyvind

Langsrud [26].

The following limitations of this statistical formulation

should be borne in mind, and the p-values should be inter-

preted judiciously.

Random experimental and categorization error
Experimental error and any uncertainties in the classifica-

tion of genes in GO are not included in the statistical model.

Perhaps, given enough information (which we essentially

never have) about those sources of error, they could be

included in the statistical model, for example through a

resampling technique.

Gene representation bias
The microarray gene set (or set from some other type of

genomic or proteomic experiment) will generally be a biased

representation of all genes. Therefore, enrichments and

depletions, of necessity defined in terms of the genes

studied, may be biased with respect to biological significance

as well. An alternative is to replace the list of the total set of

genes on the microarray with a list of the total set of genes in

the genome (or a representative sample), but that approach

introduces another source of bias: genes not on the

microarray are counted in determining N and n but have no

chance to be flagged.

GO consortium database bias for human gene
associations
The GO Consortium [1] provides a set of flat files that indicate

the association between gene names and GO categories for

several species [27]. Although the flat files for human are quite

comprehensive, we found a low hit rate for GO annotation of

human genes using the database created by the GO Consor-

tium’s downloaded MySQL script files [28]. The hit rates

were low both when the gene names were used in the format

of HUGO names and when the gene names were used in the

format of ‘HUGO_HUMAN.’ We tried the latter format

because the flat files often contained ‘_HUMAN’ appended

to the human gene names. In contrast, when we used a com-

bination of mouse (MGI) and rat (RGD) association files,

there were reasonable numbers of hits. Therefore, we now

routinely use mouse and rat annotations for human data. We

are currently augmenting the human associations in the GO

Consortium database to provide a richer annotation of

human gene names. This goal will be achieved by using the

MatchMiner database to integrate the information in the GO

Consortium database [27] and the Swiss-Prot, TrEMBL and

TrEMBLnew databases [29], and GoMiner will implement

this database for human data in the near term. The MySQL

script files will be freely available and should represent an

improvement over what is currently available to program

developers and end-users.

Non-independence of gene data
Gene-expression values within a category may be correlated

for any of several reasons. They may represent the same

gene, close family members with similar functions, genes in

the same pathway or genes in alternative pathways for per-

forming a biological function. Gene classifications in GO

may be correlated for analogous reasons. How do such rela-

tionships affect the statistics? The answer is most easily seen

by imagining a category containing nothing but five

instances of the same gene (perhaps because five different

identifiers were used and not recognized as representing the

same gene). That category might appear either to be strik-

ingly enriched (with five out of five genes flagged) or strik-

ingly depleted (with none out of five genes flagged). But the

appropriate value of n for determining statistical signifi-

cance in those cases would be 1, not 5. GoMiner’s companion

program MatchMiner [30,31] handles this problem by iden-

tifying replicates of the same gene, even if they are repre-

sented by different identifiers.

What about possible sources of correlation other than ‘same-

gene’? Do we want to dereplicate them as well? Generally,

the answer is ‘no’. Correlation of genes in the same pathway

is precisely the phenomenon we are often trying to identify.

We would not want a statistical test to adjust for (and, in

effect, null out) the effect of such relationships. Close family

members might be considered an intermediate case. The sta-

tistical model implemented in GoMiner assumes, as our

state of prior knowledge, that we know when two ‘genes’ are

identical but nothing about their relationship if they are not

identical. That seems the only available course. However, for

each category, GoMiner provides the gene identities and the

numbers given in Table 1 - sufficient information for the

knowledgeable user to decide to eliminate close family

members or pathway partners if desired.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2003/4/4/R28 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. R28.5

Genome Biology 2003, 4:R28

Table 1

Two-by-two contingency table for flagged and unflagged genes
in a GO category

Flagged genes Non-flagged genes Total

In category nf n - nf n

Not in category Nf - nf (N - n) - (Nf - nf) N - n

Total Nf N - Nf N

nf is the number of flagged genes in the category, n is the total number of
genes in the category, Nf is the number of flagged genes on the
microarray, and N is the total number of genes on the microarray. All
numbers are those obtained after dereplicating multiple instances of the
same gene.

The multiple comparisons problem
If one has not decided before analysis which particular gene

category is to be examined, a correction should be made for

the multiple opportunities to obtain a p-value indicating sta-

tistically significant enrichment or depletion. For example,

with 1,000 categories, we would expect approximately 1,000

x 0.05 = 50 false positives simply by chance if we set the crit-

ical value at p = 0.05. The most common way to correct for

this problem is that of Bonferroni (see, for example [32]), in

which the critical value is divided by the number of trials (in

this case, 1,000). However, that approach assumes indepen-

dence of categories and is so conservative that it becomes

extremely hard to detect true positives. A number of less

conservative statistical methods have also been developed,

but it is beyond the scope of this paper to review them here.

An approach based on resampling will be incorporated into

GoMiner in the coming months.

Overall, the p-values quoted should be considered as heuris-

tic measures, useful as indicators of possible statistical sig-

nificance, rather than as the results of formal inference. The

p-values can be used, for example, to sort categories to iden-

tify those of the most potential interest.

As another useful measure, we have calculated the relative

enrichment factor, Re, defined as

Re = (nf/n)/(Nf/N)

and shown as blue numbers in Figure 1a. The analogous

quantities for overexpressed (red numbers) and under-

expressed (green numbers) are also shown. Depletion is, of

course, represented by an enrichment factor less than unity.

Benchmarking GoMiner on a biological problem
As a test, GoMiner was applied to the results of our cDNA

microarray study of the molecular mechanisms by which

drug resistance develops [33]. The DAG shown in Figure 1a

was generated from that study, which used quadruplicate

‘Oncochip’ microarrays (Microarray Facility, Advanced

Technology Center, NCI [34]) to compare gene expression

profiles in a prostate cancer cell line (DU145) and a subline

(RC0.1) selected from it for resistance to the topoisomerase

1-inhibitor 9-nitro-camptothecin. The microarray included

1,399 cancer-interesting genes. 181 of those genes differed in

expression according to a threshold criterion (>1.5-fold dif-

ference). MatchMiner was used to translate IMAGE clone

Ids for the 1,399 genes into HUGO names for input to

GoMiner. Figure 1a shows that the category ‘apoptosis regu-

lator’ was enriched 2.4-fold in genes with altered expression

levels. More specifically, it was enriched 3.2-fold with under-

expressed genes and 2.0-fold with overexpressed genes.

Flow cytometric annexin V and TUNEL assays verified

important differences in apoptotic potential between the cell

lines, and analysis generated a novel hypothesis (the

‘permissive apoptosis-resistance’ hypothesis) for the rela-

tionship between apoptotic and cell-proliferation pathways

in the development of drug resistance. Figure 1a provides

more detailed information, indicating that these differences

were focused in particular subcategories of apoptosis. Thus,

GoMiner can help the user in at least two ways: it identifies

categories enriched in, or depleted of, genes of interest; and

it generates hypotheses to guide further research.

Unfortunately for us, interpretive analysis of the

DU145/RC0.1 study was initially done one gene at a time

before development of GoMiner (and, in fact, motivated that

development). Performing the GO analysis one gene at a

time would have taken more than two solid hours at the

computer for the 181 genes before getting to the much

harder parts of the task: doing the same for the entire array

(nominally > 15 hours), then collating and organizing the

information for each GO category. In contrast, operating on

a 266 MHz PC with 250 MB RAM, it took 90 seconds to

browse for and load the files, then 30 seconds for GoMiner

to process the entire array of 1,399 genes and display the

flagged and unflagged genes in their hierarchical context. In

another test, running 900 flagged genes and all of HUGO

(15,000 genes) took 4 minutes and 40 seconds on the same

computer. Overall, the processing time was essentially linear

with respect to the total number of genes (time in minutes =

0.0003 x genes + 0.0656; R2 = 0.998).

Comparison of GoMiner with related programs
Several other programs related to GoMiner have recently

appeared. These include MAPPFinder [35,36], FatiGO [37],

Onto-Express [2,38], and GoSurfer [39]. The following rep-

resents our best attempt at comparison, based on review of

the available implementations and associated documenta-

tion as of January 2003.

FatiGO is a web application. The current implementation is

very restrictive in that the user must specify ahead of time

one particular level of the GO hierarchy that is to be used for

analysis of the data. The other available applications, includ-

ing GoMiner, process data for the entire GO hierarchy and

allow the user to select views of the results dynamically. In a

trial using FatiGO’s recommended search criteria with our

standard test gene files, FatiGO did not find any GO cate-

gories with clusters of differentially expressed genes.

Onto-Express is also implemented as a web application.

Although more flexible than FatiGO, it is largely limited to a

flat view of the biological world. Whereas GoMiner provides

both tree and DAG views of the genes embedded within the

GO hierarchy, Onto-Express does not provide any hierarchi-

cal structure (the fundamental defining feature of GO).

Onto-Express lists enriched and depleted categories, but it

does not provide a statistical analysis of the results to aid

understanding. ‘Version 2,’ recently announced (at a price of

R28.6 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. http://genomebiology.com/2003/4/4/R28

Genome Biology 2003, 4:R28

$1,500 - $5,000), provides a p-value (computed by a method

not specified in the announcement).

GoSurfer is implemented as a Windows application. As such,

it lacks the flexibility of platform-independence that Java

confers upon GoMiner. GoSurfer is also rather inflexible in

that the input identifiers are required to be specific Affymetrix

probe sets. It is not clear whether other identifier types sug-

gested in a figure on the web site have been implemented. In

contrast, GoMiner uses HUGO gene names as input. These

gene names are more convenient for human interpretation,

and GoMiner’s companion program MatchMiner [30,31]

allows many other types of identifiers (listed at the end of this

section) to be converted easily into HUGO gene names. The

visual output of GoSurfer is in the form of a DAG. GoMiner

uses a text-based tree as its primary visual output because the

nodes of the DAG are inherently more difficult to label without

creating unacceptable screen clutter. The DAG gives an intu-

itive feel for the overall complexity of the categorizations, but

it is not particularly useful for detailed dynamic navigation or

for examination of categorized genes. The tabular output of

GoSurfer does not include the HUGO names, which we con-

sider to be the most useful key to gene identity. In contrast to

GoMiner, it appears that GoSurfer does not provide complete

quantitative and statistical summary data.

MAPPFinder is a pioneering project that integrates GO

analysis and biological pathway maps. GoMiner also pro-

vides the potential for this type of integration, since each

gene in the GoMiner tree classification is dynamically linked

to the corresponding set of BioCarta and KEGG biological

pathway maps. In addition to providing integration with

biological pathway maps, GoMiner provides integration

with chromosomal information via dynamic linking to

LocusLink’s chromosome viewer. GoMiner also provides

dynamic linking to SNPs and MGC databases via LocusLink.

MAPPFinder provides the fundamental tree representation

of the GO hierarchy, with summary and statistical data in

line with each category. However, unlike the tree implemen-

tation in GoMiner, it shows only the categories; the genes

themselves are shown in an auxiliary table. In GoMiner,

both the categories and the genes are seamlessly shown as

integral components of the tree.

MAPPFinder does not appear to include a DAG representa-

tion. In GoMiner, the DAG view provides a qualitative and

quantitative picture of the often-complex, multiple parent-

hood of some categories. In our opinion, this type of visual-

ization is complementary to the tree form and important to

an appreciation of the complex, highly nonlinear relation-

ships within biological systems and gene networks. This

complexity is not easy for a human to infer from the tree rep-

resentation. The GO consortium selected the DAG as its fun-

damental data structure (though not its visualization), in

part because it includes the characteristics of a network that

are not included in a tree.

MAPPFinder is written in Microsoft’s Visual Basic and is

therefore restricted to running on PCs under Windows. In

contrast, GoMiner is written in Java and runs on multiple

operating systems. We have tested it on Windows XP, 2000,

NT, and 98, as well as on Mac OS X, Solaris, Linux (Red Hat

distribution), IRIX (SGI), and FreeBSD. See the GoMiner

website for specific operating-system issues.

We recently implemented an alternative command-line

interface for GoMiner (S.N., M.S., D.W.K. and B.R.Z.,

unpublished work) to complement the GUI version. The

command-line interface allows GoMiner to be integrated

with other tools via scripts or pipes. Our website will post

updated versions of the documentation and program as soon

as comprehensive testing of this interface has been com-

pleted. In preliminary trials with the new interface we have

routinely processed more than 2,000 datasets at a time

through GoMiner. This high-throughput capability has made

two further developments possible: first, randomization

studies are being done to address the multiple-comparisons

problem (that is, to estimate the fraction of false positives

among the selected categories); second, the output data

stream is being coupled with integrated downstream analy-

sis for automated recognition of interesting results buried

within a large number of exploratory experiments. The user

can explore and visualize these interesting results with

GoMiner’s graphical user interface.

The command-line interface also allows GoMiner to interact

flexibly with its companion program MatchMiner. With

MatchMiner as a ‘preprocessor’, GoMiner can take input data

organized on the basis of ‘omic’ identifiers other than the

HUGO names central to GO. MatchMiner currently resolves

IMAGE clone ids, UniGene clusters, GenBank accession

numbers, Affymetrix ids, chromosome locations, gene

common names, and FISH clone ids, and greatly facilitates

the preparation of microarray data for analysis in GoMiner.

In conclusion, GoMiner will continue in development with a

view to integration with other bioinformatic resources being

generated by the NCI and NIH for use by the biomedical

research community. GoMiner is flexible both because it is

coded in Java to be platform-independent and because it can

accommodate either the default GO hierarchy and gene

associations or customized versions. The default is the GO

Consortium’s database of categories and gene associations as

implemented on our server. However, the user can, if

desired, edit categories and gene memberships using DAG-

Edit, the BDGP Gene Ontology Editor Tool [40]. The edited

database can then be accessed by GoMiner from a local

server to accommodate domain- and expertise-specific

applications. Another important type of flexibility is the wide

range of uses. In this report, we have presented GoMiner in

the context of microarray data, but the variety of applica-

tions is clearly much broader; it embraces the full range of

genomic and proteomic studies.

co
m

m
ent

review
s

repo
rts

depo
sited research

interactio
ns

info
rm

atio
n

refereed research

http://genomebiology.com/2003/4/4/R28 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. R28.7

Genome Biology 2003, 4:R28

Acknowledgements
GoMiner is being developed jointly by groups from the National Cancer
Institute (NCI), the Georgia Institute of Technology, and Emory Univer-
sity. This project has been supported by a contract funded by the NCI’s
Center for Cancer Research and by The Wallace H. Coulter Biomedical
Engineering Department of Georgia Tech and Emory University academic
funds for Professor May D. Wang. Its user features, statistical repertoire,
and links to external resources will continue to be expanded through the
contract funded by the NCI’s Center for Cancer Research and through
Professor Wang’s academic funds.

References
1. Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis

A, Dolinski K, Dwight S, Eppig J, et al.: Gene Ontology: tool for
the unification of biology. Nat Genet 2000, 25:25-29.

2. Khatri P, Draghici S, Ostermeier G, Krawetz S: Profiling gene
expression using Onto-Express. Genomics 2002, 79:266-270.

3. GoMiner [http://discover.nci.nih.gov/gominer]
4. GoMiner [http://www.miblab.gatech.edu/gominer]
5. Weinstein JN: Fishing expeditions. Science 1998, 282:628-629.
6. Weinstein JN: ‘Omic’ and hypothesis-driven research in the

molecular pharmacology of cancer. Curr Opin Pharmacol 2002,
2:361-365.

7. LocusLink [http://www.ncbi.nlm.nih.gov/LocusLink]
8. PubMed

[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed]
9. MedMiner [http://discover.nci.nih.gov]
10. Tanabe L, Scherf U, Smith LH, Lee JK, Hunter L, Weinstein JN: Med-

Miner: an internet text-mining tool for biomedical informa-
tion, with application to gene expression profiling.
BioTechniques 1999, 27:1210-1217.

11. GeneCards [http://thr.cit.nih.gov:8081/cards/index.html]
12. NCBI Entrez Structure

[http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Structure]
13. The Cancer Genome Anatomy Project

[http://cgap.nci.nih.gov/Pathways]
14. Berkeley Drosophila Genome Project: developers’ resources

[http://www.fruitfly.org/developers]
15. BrowserLauncher [http://browserlauncher.sourceforge.net]
16. The Apache Jakarta Project

[http://jakarta.apache.org/oro/index.html]
17. HP Labs Semantic Web Research

[http://www.hpl.hp.com/semweb/index.html]
18. MySQL Connector/J downloads

[http://www.MySQL.com/downloads/api-jdbc.html]
19. Xerces2 Java Parser Readme

[http://xml.apache.org/xerces2-j/index.html]
20. MySQL [http://www.MySQL.com]
21. Concurrent Versions System [http://www.cvshome.org]
22. jUnit [http://www.junit.org]
23. Agresti A: Categorical Data Analysis. New York: John Wiley; 1990.
24. Agresti A: A survey of Exact inference for contingency tables.

Stat Sci 1992, 7:131-177.
25. StatXact 5 for Windows. User Manual. Cambridge, MA: Cytel Software

Corporation; 2002.
26. Fisher’s Exact Test [http://www.matforsk.no/ola/fisher.htm]
27. GO Database [http://www.geneontology.org/#godatabase]
28. GO downloads [http://www.godatabase.org/dev/database/archive/]
29. Swiss-Prot, TrEMBL and TrEMBLnew database

[ftp://ftp.ebi.ac.uk/pub/databases/sp_tr_nrdb/]
30. Bussey JK, Kane D, Sunshine M, Narasimhan S, Nishizuka S, Reinhold

WC, Zeeberg B, Ajay, Weinstein JN: MatchMiner: a tool for
batch navigation among gene and gene product identifiers.
Genome Biol 2003, 4:R27.

31. MatchMiner [http://discover.nci.nih.gov/matchminer/]
32. Bonferroni [http://home.clara.net/sisa/bonhlp.htm]
33. Reinhold WC, Kouros-Mehr H, Kohn KW, Maunakea AK, Lababidi

S, Roschke A, Stover K, Alexander J, Pantazis P, Miller L, et al.:
Apoptotic susceptibility of cancer cells selected for camp-
tothecin resistance: gene expression profiling, functional
analysis, and molecular interaction mapping. Cancer Res 2003,
63:1000-1011.

34. NCI human Oncochip genes
[http://nciarray.nci.nih.gov/gi_acc_ug_title.shtml]

35. Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC,
Conklin BR: MAPPFinder: using Gene Ontology and
GenMAPP to create a global gene-expression profile from
microarray data. Genome Biol 2002, 4:R7.

36. MAPPFinder [http://www.genmapp.org/MAPPFinder.html]
37. FatiGO [http://fatigo.bioinfo.cnio.es/]
38. Onto-Express [http://vortex.cs.wayne.edu/Projects.html]
39. GoSurfer [http://biosun1.harvard.edu/complab/gosurfer/]
40. BDGP Gene Ontology Editor Tool

[http://www.godatabase.org/dev/editor.html]

R28.8 Genome Biology 2003, Volume 4, Issue 4, Article R28 Zeeberg et al. http://genomebiology.com/2003/4/4/R28

Genome Biology 2003, 4:R28

